Matematiska institutionen

Kursplan för Partiella differentialekvationer, introduktionskurs

Introduction to Partial Differential Equations

Kursplan

  • 5 högskolepoäng
  • Kurskod: 1MA053
  • Utbildningsnivå: Avancerad nivå
  • Huvudområd(en) och successiv fördjupning: Matematik A1N
  • Betygsskala: Underkänd (U), 3, 4, 5.
  • Inrättad: 2007-03-15
  • Inrättad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Reviderad: 2013-05-06
  • Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Gäller från: vecka 34, 2013
  • Behörighet: 120 hp varav 60 hp matematik, inklusive Flervariabelanalys, Linjär algebra II och Transformmetoder.
  • Ansvarig institution: Matematiska institutionen

Mål

Efter godkänd kurs ska studenten kunna

  • beskriva de vanligaste partiella differentialekvationerna som uppträder då man studerar problem rörande t.ex. värmeledning, strömning, elasticitet och vågutbredning;
  • redogöra för grundläggande frågor rörande existens och entydighet av lösningar, och kontinuerligt beroende av begynnelse- och randvärden;
  • lösa enklare första ordningen ekvationer genom metoden med karakteristikor;
  • klassificera andra ordningens ekvationer;
  • lösa enklare begynnelse- och randvärdesproblem genom att använda exempelvis d'Alemberts lösningsformel, variabelseparation och utveckling i Fourierserier eller andra ortogonalsystem;
  • i matematisk form beskriva, beräkna och analysera vågutbredning och värmeledning;
  • formulera maximumprinciper för olika ekvationer och härleda konsekvenser.

Innehåll

Introduktion av några vanligt förekommande partiella differentialekvationer, fysikalisk bakgrund och härledning utifrån fysikaliska principer.
Första ordningens partiella differentialekvationer: karakteristikor, linjära, kvasilinjära och allmänna olinjära ekvationer.
Klassificering av andra ordningens partiella differentialekvationer i två variabler.
Endimensionella vågekvationen, Cauchys problem, d'Alemberts formel, icke-homogena vågekvationen.
Separation av variabler, värmelednings- och vågekvationen. Energimetoden, entydighet.
Sturm-Liouvilleproblem och egenfunktionsutveckling.
Elliptiska ekvationer. Dirichlets problem, harmoniska funktioner, maximumprincipen. Poissons formel.
Greenfunktioner och integralrepresentation. Värmeledningskärnan.
Partiella differentialekvationer i högre dimensioner.

Undervisning

Föreläsningar och räkneövningar.

Examination

Skriftligt prov vid kursens slut kombinerat med inlämningsuppgifter under kursen enligt anvisningar som lämnas vid kursens start.

Litteratur

Gäller från: vecka 24, 2013

  • Pinchover, Yehuda; Rubinstein, Jacob An introduction to partial differential equations

    Cambridge: Cambridge University Press, 2005

    Se bibliotekets söktjänst

    Obligatorisk