Matematiska institutionen

Kursplan för Envariabelanalys M

Single Variable Calculus M

Kursplan

  • 10 högskolepoäng
  • Kurskod: 1MA210
  • Utbildningsnivå: Grundnivå
  • Huvudområd(en) och successiv fördjupning: Matematik G1F
  • Betygsskala: Underkänd (U), 3, 4, 5.
  • Inrättad: 2012-03-08
  • Inrättad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Reviderad: 2012-03-08
  • Reviderad av: Teknisk-naturvetenskapliga fakultetsnämnden
  • Gäller från: vecka 31, 2012
  • Behörighet: Momentet Grundläggande matematik i kursen Introduktion till matematikstudier alternativt Baskurs i matematik
  • Ansvarig institution: Matematiska institutionen

Mål

Efter godkänd kurs ska studenten kunna

  • redogöra för begreppen gränsvärde, kontinuitet, derivata och integral för funktioner av en variabel samt kunna använda och beräkna uttryck som involverar dessa;
  • kunna använda sig av begreppen i föregående punkt för att analysera en funktions egenskaper, t.ex. skissa en graf, och för beräkning av areor, volymer och båglängder;
  • beräkna elementära funktioners Taylorutveckling samt kunna använda dessa vid tillämpningar;
  • använda några konvergenskriterier för positiva serier samt kunna använda potensserier och begreppet absolutkonvergens;
  • lösa linjära differentialekvationer med konstanta koefficienter, linjära differentialekvationer av första ordningen med hjälp av integrerande faktor samt separabla differentialekvationer;
  • översätta problem från relevanta tillämpningsområden till för matematisk behandling lämplig form;
  • formulera viktigare resultat och satser inom kursens område;
  • återge huvuddragen i några av bevisen inom kursens område, samt kunna konstruera egna enklare bevis;
  • presentera matematiska resonemang för andra.

Innehåll

Funktioner: monotonitet och invers. Inverserna till de trigonometriska funktionerna. Gränsvärde och kontinuitet: begrepp och räkneregler. Derivata: begrepp, räkneregler, kedjeregeln, medelvärdessatsen med tillämpningar. Extremvärdesproblem. Kurvritning. Integral: bestämd integral, primitiv funktion, integralkalkylens fundamentalsats. Integrationsteknik: substitutioner, partiell integration, integralen till rationella funktioner. Generaliserade integraler. Integrationstillämpningar: areor, volymer och båglängder. Taylors formel med tillämpningar. Numeriska serier: konvergensbegreppet, konvergenskriterier för positiva serier, absolutkonvergens. Potensserier. Ordinära differentialekvationer: linjära differentialekvationer med konstanta koefficienter, första ordningens linjära differentialekvationer och separabla differentialekvationer.

Undervisning

Föreläsningar, lektioner och räkneövningar.

Examination

Skriftligt prov vid kursens slut. Provet kan kombineras med inlämningsuppgifter under kursen enligt anvisningar som lämnas vid kursens start.

Övriga föreskrifter

Kursen kan inte tillgodoräknas i examen tillsammans med någon av kurserna Envariabelanalys, Derivator och integraler, Serier och ordinära differentialekvationer och Funktionslära för ingenjörer.

Litteratur

Gäller från: vecka 31, 2012

  • Adams, Robert A.; Essex, Christopher Calculus : a complete course

    8th ed.: Toronto: Pearson, cop. 2013

    Se bibliotekets söktjänst

    Obligatorisk