The well-known multiple hypergeometric series are all solutions to canonical systems of partial differential equations, which can be written in many forms. For the q-case, the canonical systems of partial q-difference equations have corresponding solutions multiple q-hypergeometric series [1]. These solutions are only valid near the origin and can be extended by analytic and meromorphic continuation. In order to explain the extended convergence regions for these multiple q-hypergeometric series, which consist of a rhombus and an octahedron [2], etc. we have to introduce so-called q-real numbers [3]. Finally, we shall introduce a new q-Laplace transform for a Jackson q-integral $\int_0^a f(t, q) \, dq(t)$, with upper integration limit $\frac{1}{s(1-q)}$.

We shall conclude with a list of q-Laplace transforms for (multiple) q-hypergeometric series, some with function arguments so-called q-real numbers.

References

