Sondre Kvamme

Contact details

Telephone:                     +4618-471 3186
Visiting address:           Room ÅNG 74104 Lägerhyddsvägen 1, Hus 1, 6 och 7
Postal address:             Box 480, 751 06 UPPSALA

About me

I am a currently a postdoc at the Department of Mathematics at Uppsala University. My contract lasts until 01/11/2021.

Research interests

  • Associative rings and algebras
  • Homological and homotopical algebra
  • Representation theory of finite-dimensional algebras
  • Higher Auslander-Reiten theory



  1. Sondre Kvamme. Axiomatizing subcategories of abelian categories   arXiv:2006.07715
  2. Nan Gao and Julian Külshammer and Sondre Kvamme and Chrysostomos Psaroudakis. A functorial approach to monomorphism categories for species I,


  1. Sondre Kvamme. dZ-cluster tilting subcategories of singularity categories,  Accepted for publication in Mathematische Zeitschrift (2020).                                 arXiv:1808.03511
  2. Sondre Kvamme. A generalization of the Nakayama functor,
    Accepted for publication in Algebras and Representation Theory (2019).
  3. Sondre Kvamme. Gorenstein projective objects in functor categories,
    Nagoya Mathematical Journal (2018).
    arXiv:1801.05493   First view
  4. Sondre Kvamme and Rene Marczinzik. Co-Gorenstein algebras,
    Applied Categorical Structures 27 (3) (2019): 277-287.
    arXiv:1805.00274   Journal   pdf
  5. Gustavo Jasso and Sondre Kvamme An introduction to higher Auslander–Reiten theory, Bulletin of the London Mathematical Society 51 (1) (2019): 1-24
    arXiv:1610.05458   Journal


  1. Sondre Kvamme and Matthew Pressland. Auslander–Reiten translations for Gorenstein algebras, Appendix to Monomial Gorenstein algebras and the stably Calabi–Yau property, by Ana Garcia Elsener,                                               Accepted for publication in Algebras and Representation Theory (2020)                arXiv:1807.07018
  2. Sondre Kvamme. Nakayama algebras associated to unbounded Kupisch series,
    Appendix to Higher Nakayama algebras I: Construction, by Gustavo Jasso and Julian Külshammer, Advances in Mathematics 351 (2019): 1139-1200
    arXiv:1604.03500   Journal

Not intended for publication

Sondre Kvamme. Projectively generated d-abelian categories are d-cluster tilting,